Dynamics of Split Polynomial Maps: Uniform Bounds for Periods and Applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Split Polynomial Maps: Uniform Bounds for Periods and Applications

Let K be an algebraically closed field of characteristic 0. Following Medvedev-Scanlon, a polynomial of degree δ ≥ 2 is said to be disintegrated if it is not linearly conjugate to x or ±Tδ(x) where Tδ(x) is the Chebyshev polynomial of degree δ. Let d and n be integers greater than 1, we prove that there exists an effectively computable constant c(d, n) depending only on d and n such that the fo...

متن کامل

Barbosa, Uniform Polynomial Time Bounds, and Promises

This note is a commentary on, and critique of, André Luiz Barbosa’s paper entitled “P != NP Proof.” Despite its provocative title, what the paper is seeking to do is not to prove P 6= NP in the standard sense in which that notation is used in the literature. Rather, Barbosa is (and is aware that he is) arguing that a different meaning should be associated with the notation P 6= NP, and he claim...

متن کامل

Polynomial Bounds for Decoupling, with Applications

Let f(x) = f(x1, . . . , xn) = ∑ |S|≤k aS ∏ i∈S xi be an n-variate real multilinear polynomial of degree at most k, where S ⊆ [n] = {1, 2, . . . , n}. For its one-block decoupled version,

متن کامل

UNIFORM LOWER BOUNDS FOR POLYNOMIAL RETURN TIMES preliminary version

Let A ⊂ Z be a set of positive upper density δ∗(A) > 0. For given small 0 < ε ¿ α we study the set of integers d for which the sets A and A + d intersect ”optimally”, that is δ∗(A ∩ (A + d)) > δ∗(A)2 − ε We show that there is a positive integer M such that every interval of length M contains at least c(ε)M such values of d, for some explicit exponential type function c(ε).

متن کامل

Inequalities and tail bounds for elementary symmetric polynomial with applications

This paper studies the elementary symmetric polynomials Sk(x) for x ∈ Rn. We show that if |Sk(x)|, |Sk+1(x)| are small for some k > 0 then |Sl(x)| is also small for all l > k. We use this to prove probability tail bounds for the symmetric polynomials when the inputs are only t-wise independent, that may be useful in the context of derandomization. We also provide examples of t-wise independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2016

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnw041